THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5540 Advanced Geometry 2016-2017 Supplementary Exercise 3

In the following exercises, we assume the axioms of incidence, axioms of betweenness, axioms of congruence for line segments and angles.

1. Let $\tilde{\mathcal{P}}$ be the set of all oriented line segments and let $\overrightarrow{AB}, \overrightarrow{CD}, \overrightarrow{EF} \in \tilde{\mathcal{P}}$. Prove that

$$(\overrightarrow{AB} + \overrightarrow{CD}) + \overrightarrow{EF} = \overrightarrow{AB} + (\overrightarrow{CD} + \overrightarrow{EF}).$$

2. Recall that if AB, CD are line segments, AB is less than CD if there exists E such that C * E * D and $AB \cong CE$. We denote it by AB < CD.

However, this definition depends on the choice of orientation of CD (but not AB, since $AB \cong BA$). Show that the above definition is well established by proving that AB < CD if and only if AB < DC.

- 3. Let AB be a line segment and let l be a line. Prove that there exists a sequence of points C_n such that $C_n * C_{n+1} * C_{n+2}$ and $C_n C_{n+1} \cong AB$ for all $n = 1, 2, 3, \ldots$
- 4. Let $\angle BAC$ and $\angle BAD$ be supplementary angles and $\angle BAC \cong \angle B'A'C'$. Prove that $\angle B'A'C'$ and $\angle B'A'D'$ are supplementary angles if and only if $\angle BAD \cong \angle B'A'D'$.
- 5. Prove that any two right angles are congruent to each other.
- 6. Rephase proposition 5 and 6 in Book I of Eucild's Elements and rewrite the proofs of them.

Lecturer's comment:

1. There exists a unique G such that A * B * G and $BG \cong CD$ and $\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AG}$. Also, there exists a unique H such that A * G * H and $GH \cong EF$ and $(\overrightarrow{AB} + \overrightarrow{CD}) + \overrightarrow{EF} = \overrightarrow{AG} + \overrightarrow{EF} = \overrightarrow{AH}$.

On the other hand, there exists a unique I such that C * D * I and $DI \cong EF$ and $\overrightarrow{CD} + \overrightarrow{EF} = \overrightarrow{CI}$. Also, there exists a unique J such that A * B * J and $BJ \cong CI$ and $\overrightarrow{AB} + (\overrightarrow{CD} + \overrightarrow{EF}) = \overrightarrow{AB} + \overrightarrow{BJ} = \overrightarrow{AJ}$.

Then, $BG \cong CD$ and $GH \cong EF \cong DI$, by axiom **C3**, $BH \cong CI$. Also $CI \cong BJ$, so $BH \cong BJ$. Since J, H and A are on the opposite side of B, J and H are on the same side of B. By axiom **C1**, H = J. As a result,

$$(\overrightarrow{AB} + \overrightarrow{CD}) + \overrightarrow{EF} = \overrightarrow{AB} + (\overrightarrow{CD} + \overrightarrow{EF}).$$

2. Suppose that AB < CD, there exists E such that C * E * D and $AB \cong CE$.

By axiom C1, there exists unique E' on the ray r_{DC} such that $AB \cong DE'$. We claim that D * E' * C, and so AB < DC.

Suppose not, then we have C = E' or E' * C * D.

- (i) If C = E', let F be a point such that F and E are on the opposite side of D, and DF ≅ DE (axiom C1).
 Since CE ≅ AB ≅ CD and ED ≅ DF, by axiom C3 CD ≅ CF. Note that D and F are on the same side of C, it forces that C = F by axiom C1, which is a contradiction.
- (ii) If E'*C*D, let F be a point such that F and E are on the opposite side of D, and DF ≃ DE (axiom C1).
 Furthermore, let G be a point such that G and D are on the opposite side of F, and FG ≃ E'C (axiom C1).
 Since CE ≃ AB ≃ E'D and ED ≃ DF, by axiom C3 CD ≃ E'F. Again, CD ≃ E'F and E'F a

Since CD = AD = DD and DD = DT, by axiom C3 CD = DT. Again, CD = DT and $E'C \cong FG$, by axiom $C3 E'D \cong E'G$. Note that D and F are on the same side of E', it forces that C = F by axiom C1, which is a contradiction.

3. Let AB be a line segment and let l be a line.

By axiom **I2**, there exists 2 points lying on l. We choose any one of them and call it C_1

Take one ray $r \subset l$ originated from C_1 , by axiom C1, there exists C_2 on r such that $C_1C_2 \cong AB$.

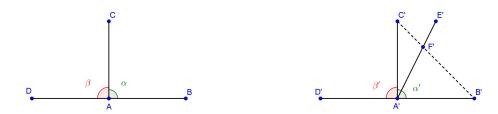
By axiom C1, there exists C_3 such that C_3 and C_1 are on the opposite side of C_2 and $C_2C_3 \cong AB$. Repeating this process, we can obtain a sequence of points C_n as required.

- 4. (i) "⇒": By choosing another B', C' and D' if necessary, we may assume AB ≅ A'B', AC ≅ A'C' and AD ≅ A'D'.
 AB ≅ A'B', AC ≅ A'C' and ∠BAC ≅ ∠B'A'C' implies that BC ≅ B'C' and ∠BCA ≅ ∠B'C'A' (axiom C6, SAS).
 Then, we have CA ≅ C'A' and AD ≅ A'D', so CD ≅ C'D' (axiom C3.
 CD ≅ C'D', BC ≅ B'C' and ∠BCA ≅ ∠B'C'A' implies that BD ≅ B'D' and ∠BDA ≅ ∠B'D'A' (axiom C6, SAS).
 BD ≅ B'D', AD ≅ A'D' and ∠BDA ≅ ∠B'D'A' implies that ∠BAD ≅ ∠B'A'D' (axiom C6, SAS).
 - (ii) "⇐": Let E' be a point such that E' lies on the line l_{A'C'}, and E', C' are on the opposite side of A'. Then ∠B'A'C' and ∠B'A'E' are supplementary.

By the previous part, we have $\angle BAD \cong \angle B'A'E'$. By assumption, we have $\angle BAD \cong \angle B'A'D'$, so $\angle B'A'D' \cong \angle B'A'E$.

By axiom C4, D' lies on the ray $r_{A'E'}$ and so $\angle B'A'C'$ and $\angle B'A'D'$ are supplementary angles.

5. Suppose that α and α' are right angles. By assumption, $\alpha \cong \beta$ and $\alpha' \cong \beta'$. We claim that $\alpha \cong \alpha'$. Suppose the contrary, without loss of generality, let $\alpha < \alpha'$. Then there exists a ray $r_{A'E'}$ in the interior of α' such that $\angle E'A'B' \cong \alpha$.



Claim: The ray $r_{A'C'}$ is in the interior of $\angle E'A'D'$, and so $\beta' < \angle E'A'D'$.

By crossbar theorem, the ray $r_{A'E'}$ intersect the line segment at a point F'. Therefore, C' and B' are on the opposite side of the line $l_{A'E'}$. Also, D' and B' are on the opposite side of the line $l_{A'E'}$. Therefore, C' and D' are on the same side of the line $l_{A'E'}$.

On the other hand, we have C' * F' * B' and so C' and F' are on the same side of $l_{A'D'}$. Also, E' and F' are on the same side of $l_{A'D'}$. Therefore, C' and E' are on the same side of the line $l_{A'D'}$. Therefore, the ray $r_{A'C'}$ is in the interior of $\angle E'A'D'$.

Note that $\angle E'A'B' \cong \alpha$, α , β and $\angle E'A'B'$, $\angle E'A'D'$ are supplementary, so $\angle E'A'D' \cong \beta$. As a result, $\alpha' \cong \beta' < \angle E'A'D'' \cong \beta \cong \alpha$ which contradicts to that $\alpha < \alpha'$.

- 6. (a) (Proposition 5) Given an isosceles triangle ABC with $AB \cong AC$, then $\angle ABC \cong \angle ACB$ (known as "base \angle s, isos. \triangle). Furthermore, if D and E are points such that A * B * D and A * C * E, then $\angle CBD \cong \angle BCE$.
- proof: Take a point F on the ray r_{BD} . By axiom (C.1), there exists a unique point G on the ray r_{AE} such that $AF \cong AG$. Since $AB \cong AC$, $AG \cong AF$ and $\angle BAG \cong \angle CAF$, by axiom (C.6), we have $\angle ABG \cong \angle ACF$, $\angle AGB \cong \angle AFC$ and $BG \cong CF$. By construction, we have A * B * F and A * C * G, also $AF \cong AG$ and $AB \cong AC$, so $BF \cong CG$. Then, since $BF \cong CG$, $\angle BFC \cong \angle CGB$ and $CF \cong BG$, by axiom (C.6), we have $\angle FBC \cong \angle GCB$, $\angle BCF \cong \angle CBG$. Again A * B * F and A * C * G implies r_{CB} and r_{BC} are in the interior of $\angle ACF$ and $\angle ABG$ respectively, also $\angle ABG \cong \angle ACF$ and $\angle CBG \cong \angle BCF$, so $\angle ABC \cong \angle ACB$.
 - (b) (Proposition 6) Given a triangle ABC. If $\angle ABC \cong \angle ACB$, then $AB \cong AC$ (known as "base \angle s equal").
- proof: Assume that AB is not congruent to AC, then either AB > AC or AB < AC. Without loss of generality, we assume AB > AC. By definition, there exists a point D such that A * D * Band $BD \cong AC$. $DB \cong AC$, $BC \cong CB$ and $\angle DBC \cong \angle ACB$ (assumption), by axiom (C.6), we have $\angle DBC \cong \angle ACB$ and $\angle DCB \cong \angle ABC = \angle DBC$. Therefore, $\angle ACB \cong \angle BCD$. By axiom (C.6), there is only one angle on the same side of the ray r_{CD} congruent to $\angle ACB$, so $r_{CA} = r_{CD}$ and A = D, which contradicts to that A * D * B.